Variational principles in image processing and the regularization of orientation fields

Jaime Cisternas*, Marcelo GÁlvez, Bram Stieltjes, Frederik B. Laun

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Variational principles and partial differential equations have proved to be fundamental elements in the mathematical modeling of extended systems in physics and engineering. Of particular interest are the equations that arise from a free energy functional. Recently variational principles have begun to be used in Image Processing to perform basic tasks such as denoising, debluring, etc. Great improvements can be achieved by selecting the most appropriate form for the functional.
In this article we show how these ideas can be applied not just to scalar fields (i.e. grayscale images) but also to curved manifolds such as the space of orientations. This work is motivated by the denoising of images acquired with Magnetic Resonance scanners using diffusion-sensitized magnetic gradients.
Idioma originalInglés
Páginas (desde-hasta)2705-2716
Número de páginas12
PublicaciónInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Volumen19
N.º8
DOI
EstadoPublicada - ago. 2009

Palabras clave

  • Variational principles
  • Image processing
  • Orientation field
  • Anisotropic diffusion
  • Magnetic resonance imaging

Huella

Profundice en los temas de investigación de 'Variational principles in image processing and the regularization of orientation fields'. En conjunto forman una huella única.

Citar esto