Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors

Suraj S. Cheema*, Nirmaan Shanker, Li Chen Wang, Cheng Hsiang Hsu, Shang Lin Hsu, Yu Hung Liao, Matthew San Jose, Jorge Gomez, Wriddhi Chakraborty, Wenshen Li, Jong Ho Bae, Steve K. Volkman, Daewoong Kwon, Yoonsoo Rho, Gianni Pinelli, Ravi Rastogi, Dominick Pipitone, Corey Stull, Matthew Cook, Brian TyrrellVladimir A. Stoica, Zhan Zhang, John W. Freeland, Christopher J. Tassone, Apurva Mehta, Ghazal Saheli, David Thompson, Dong Ik Suh, Won Tae Koo, Kab Jin Nam, Dong Jin Jung, Woo Bin Song, Chung Hsun Lin, Seunggeol Nam, Jinseong Heo, Narendra Parihar, Costas P. Grigoropoulos, Padraic Shafer, Patrick Fay, Ramamoorthy Ramesh, Souvik Mahapatra, Jim Ciston, Suman Datta, Mohamed Mohamed, Chenming Hu, Sayeef Salahuddin*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

124 Citas (Scopus)


With the scaling of lateral dimensions in advanced transistors, an increased gate capacitance is desirable both to retain the control of the gate electrode over the channel and to reduce the operating voltage1. This led to a fundamental change in the gate stack in 2008, the incorporation of high-dielectric-constant HfO2 (ref. 2), which remains the material of choice to date. Here we report HfO2–ZrO2 superlattice heterostructures as a gate stack, stabilized with mixed ferroelectric–antiferroelectric order, directly integrated onto Si transistors, and scaled down to approximately 20 ångströms, the same gate oxide thickness required for high-performance transistors. The overall equivalent oxide thickness in metal–oxide–semiconductor capacitors is equivalent to an effective SiO2 thickness of approximately 6.5 ångströms. Such a low effective oxide thickness and the resulting large capacitance cannot be achieved in conventional HfO2-based high-dielectric-constant gate stacks without scavenging the interfacial SiO2, which has adverse effects on the electron transport and gate leakage current3. Accordingly, our gate stacks, which do not require such scavenging, provide substantially lower leakage current and no mobility degradation. This work demonstrates that ultrathin ferroic HfO2–ZrO2 multilayers, stabilized with competing ferroelectric–antiferroelectric order in the two-nanometre-thickness regime, provide a path towards advanced gate oxide stacks in electronic devices beyond conventional HfO2-based high-dielectric-constant materials.

Idioma originalInglés
Páginas (desde-hasta)65-71
Número de páginas7
EstadoPublicada - 7 abr. 2022
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.


Profundice en los temas de investigación de 'Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors'. En conjunto forman una huella única.

Citar esto