Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation

Pablo Gutiérrez*, Daniel Escaff, Orazio Descalzi

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

The cubic-quintic complex Ginzburg-Landau is the amplitude equation for systems in the vicinity of an oscillatory sub-critical bifurcation (Andronov-Hopf), and it shows different localized structures. For pulse-type localized structures, we review an approximation scheme that enables us to compute some properties of the structures, like their existence range. From that scheme, we obtain conditions for the existence of pulses in the upper limit of a control parameter. When we study the width of pulses in that limit, the analytical expression shows that it is related to the transition between pulses and fronts.This fact is consistent with numerical simulations. © 2009 The Royal Society.
Idioma originalInglés
Páginas (desde-hasta)3227-3238
Número de páginas12
PublicaciónPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volumen367
N.º1901
DOI
EstadoPublicada - 28 ago. 2009

Huella

Profundice en los temas de investigación de 'Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation'. En conjunto forman una huella única.

Citar esto