Resumen
We show the existence of periodic exploding dissipative solitons. These non-chaotic explosions appear when higher-order nonlinear and dispersive effects are added to the complex cubic quintic Ginzburg Landau equation modelling soliton transmission lines. This counterintuitive phenomenon is the result of period-halving bifurcations leading to order (periodic explosions), followed by perioddoubling bifurcations (or intermittency) leading to chaos (non-periodic explosions).
Idioma original | Inglés |
---|---|
Número de artículo | 20150114 |
Publicación | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |
Volumen | 373 |
N.º | 2056 |
DOI | |
Estado | Publicada - 13 dic. 2015 |
Publicado de forma externa | Sí |
Nota bibliográfica
Publisher Copyright:© 2015 The Author(s) Published by the Royal Society. All rights reserved.