Thermally Constrained Codesign of Heterogeneous 3-D Integration of Compute-in-Memory, Digital ML Accelerator, and RISC-V Cores for Mixed ML and Non-ML Workloads

Yuan Chun Luo, Anni Lu, Janak Sharda, Moritz Scherer, Jorge Tomas Gomez, Syed Shakib Sarwar, Ziyun Li, Reid Frederick Pinkham, Barbara De Salvo, Shimeng Yu

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Heterogeneous 3-D (H3D) integration not only reduces the chip form factor and fabrication cost but also allows the merging of diverse compute paradigms that suit different applications. This is especially attractive when modern algorithms, such as the augmented reality/virtual reality (AR/VR) workloads, consist of mixed machine learning (ML) and non-ML workloads. To date, codesign that considers the thermal, latency, and power constraints of H3D hardware is largely unexplored. In this work, a thermally aware framework for H3D hardware design is developed to evaluate the thermal, latency, and power trade-offs for a heterogeneous system with compute-in-memory (CIM), digital ML cores, and RISC-V cores. The framework solves for runtime tunable operating points described as the optimal speedup factor, the number of activated RISC-V cores, the cooling coefficient, and the activity rate based on user-defined criteria, achieving up to 135 TOPS and 215 TOPS/W under 74 <inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>C for the AR/VR workloads.

Idioma originalInglés
Páginas (desde-hasta)1-8
Número de páginas8
PublicaciónIEEE Transactions on Very Large Scale Integration (VLSI) Systems
DOI
EstadoAceptada/en prensa - 2024
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
IEEE

Huella

Profundice en los temas de investigación de 'Thermally Constrained Codesign of Heterogeneous 3-D Integration of Compute-in-Memory, Digital ML Accelerator, and RISC-V Cores for Mixed ML and Non-ML Workloads'. En conjunto forman una huella única.

Citar esto