The transition to explosive solitons and the destruction of invariant tori

Jaime Cisternas, Orazio Descalzi*, Carlos Cartes

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

We investigate the transition to explosive dissipative solitons and the destruction of invariant tori in the complex cubic-quintic Ginzburg-Landau equation in the regime of anomalous linear dispersion as a function of the distance from linear onset. Using Poncaré sections, we sequentially find fixed points, quasiperiodicity (two incommesurate frequencies), frequency locking, two torus-doubling bifurcations (from a torus to a 2-fold torus and from a 2-fold torus to a 4-fold torus), the destruction of a 4-fold torus leading to non-explosive chaos, and finally explosive solitons. A narrow window, in which a 3-fold torus appears, is also observed inside the chaotic region.
Idioma originalInglés
Páginas (desde-hasta)660-668
Número de páginas9
PublicaciónCentral European Journal of Physics
Volumen10
N.º3
DOI
EstadoPublicada - jun. 2012

Palabras clave

  • Cubic-quintic Ginzburg-Landau equation
  • Destruction of invariant tori
  • Explosive dissipative solitons

Huella

Profundice en los temas de investigación de 'The transition to explosive solitons and the destruction of invariant tori'. En conjunto forman una huella única.

Citar esto