Resumen
This paper presents a method for damage identification of wind turbine blades based on vibration data and machine learning (ML) techniques and their validation using experimental data collected at different states of artificially-induced damage. The acceleration responses collected from accelerometers placed along the blades are preprocessed according to the type of network used for damage diagnosis. The ML approach is a supervised strategy in which a multilayered perceptron (MLP) takes a vector of damage-sensitive features, calculated from the acceleration time series. The accuracy of the approach is evaluated, and the effects of the operational and environmental variables (EOV) are discussed.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Experimental Vibration Analysis for Civil Engineering Structures - EVACES 2023 |
Editores | Maria Pina Limongelli, Pier Francesco Giordano, Carmelo Gentile, Said Quqa, Alfredo Cigada |
Editorial | Springer Science and Business Media Deutschland GmbH |
Páginas | 458-467 |
Número de páginas | 10 |
Volumen | 2 |
ISBN (versión impresa) | 9783031391163 |
DOI | |
Estado | Publicada - 2023 |
Evento | Experimental Vibration Analysis for Civil Engineering Structures - EVACES 2023 - Volume 2 - Milan, Italia Duración: 30 ago. 2023 → 1 sep. 2023 |
Serie de la publicación
Nombre | Lecture Notes in Civil Engineering |
---|---|
Volumen | 433 LNCE |
ISSN (versión impresa) | 2366-2557 |
ISSN (versión digital) | 2366-2565 |
Conferencia
Conferencia | Experimental Vibration Analysis for Civil Engineering Structures - EVACES 2023 - Volume 2 |
---|---|
País/Territorio | Italia |
Ciudad | Milan |
Período | 30/08/23 → 1/09/23 |
Nota bibliográfica
Publisher Copyright:© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.