Strong nonlocal coupling stabilizes localized structures: An analysis based on front dynamics

C. Fernandez-Oto*, M. G. Clerc, D. Escaff, M. Tlidi

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

47 Citas (Scopus)

Resumen

We investigate the effect of strong nonlocal coupling in bistable spatially extended systems by using a Lorentzian-like kernel. This effect through front interaction drastically alters the space-time dynamics of bistable systems by stabilizing localized structures in one and two dimensions, and by affecting the kinetics law governing their behavior with respect to weak nonlocal and local coupling. We derive an analytical formula for the front interaction law and show that the kinetics governing the formation of localized structures obeys a law inversely proportional to their size to some power. To illustrate this mechanism, we consider two systems, the Nagumo model describing population dynamics and nonlinear optics model describing a ring cavity filled with a left-handed material. Numerical solutions of the governing equations are in close agreement with analytical predictions.
Idioma originalInglés
Número de artículo174101
PublicaciónPhysical Review Letters
Volumen110
N.º17
DOI
EstadoPublicada - 22 abr. 2013

Huella

Profundice en los temas de investigación de 'Strong nonlocal coupling stabilizes localized structures: An analysis based on front dynamics'. En conjunto forman una huella única.

Citar esto