Stable stationary and breathing holes at the onset of a weakly inverted instability

Orazio Descalzi*, Helmut R. Brand

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

30 Citas (Scopus)

Resumen

We show numerically different stable localized structures including stationary holes, moving holes, breathing holes, stationary and moving pulses in the one-dimensional subcritical complex Ginzburg–Landau equation with periodic boundary conditions, and using two classes of initial conditions. The coexistence between different types of stable solutions is summarized in a phase diagram. Stable breathing moving holes as well as breathing nonmoving holes have not been described before for dissipative pattern-forming systems including reaction-diffusion systems.
Idioma originalInglés
Número de artículo055202
PublicaciónPhysical Review E
Volumen72
N.º5
DOI
EstadoPublicada - nov. 2005

Palabras clave

  • Pattern formation in reactions with diffusion flow and heat transfer
  • Oscillations chaos and bifurcations
  • Nonequilibrium and irreversible thermodynamics

Huella

Profundice en los temas de investigación de 'Stable stationary and breathing holes at the onset of a weakly inverted instability'. En conjunto forman una huella única.

Citar esto