Sources and sinks in the vicinity of a weakly inverted instability

Jaime Cisternas*, Orazio Descalzi

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

The dynamics of perturbations around sinks and sources of traveling waves (TW) is studied in the cubic-quintic Ginzburg-Landau equation from an analytical point of view. Perturbations generically propagate in a direction opposite to the TW. Thus, a sink of TW is a source of perturbations and vice versa. For small values of time we predict there is a lower bound for the group velocity. For large values of time we predict the asymptotic value of the group velocity of the wave packet. Both predictions are in good agreement with direct numerical simulations.
Idioma originalInglés
Páginas (desde-hasta)2821-2826
Número de páginas6
PublicaciónInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Volumen17
N.º8
DOI
EstadoPublicada - ago. 2007

Palabras clave

  • Cubic-quintic Ginzburg-Landau equation
  • Dissipative dark solitons
  • Sinks
  • Sources

Huella

Profundice en los temas de investigación de 'Sources and sinks in the vicinity of a weakly inverted instability'. En conjunto forman una huella única.

Citar esto