Siracusa: A 16 nm Heterogenous RISC-V SoC for Extended Reality With At-MRAM Neural Engine

Arpan Suravi Prasad*, Moritz Scherer, Francesco Conti, Davide Rossi, Alfio Di Mauro, Manuel Eggimann, Jorge Tomas Gomez, Ziyun Li, Syed Shakib Sarwar, Zhao Wang, Barbara De Salvo, Luca Benini

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

Extended reality (XR) applications are machine learning (ML)-intensive, featuring deep neural networks (DNNs) with millions of weights, tightly latency-bound (10-20 ms end-to-end), and power-constrained (low tens of mW average power). While ML performance and efficiency can be achieved by introducing neural engines within low-power systems-on-chip (SoCs), system-level power for nontrivial DNNs depends strongly on the energy of non-volatile memory (NVM) access for network weights. This work introduces Siracusa, a near-sensor heterogeneous SoC for next-generation XR devices manufactured in 16 nm CMOS. Siracusa couples an octa-core cluster of RISC-V digital signal processing (DSP) cores with a novel tightly coupled 'At-Memory' integration between a state-of-the-art digital neural engine called N-EUREKA and an on-chip NVM based on magnetoresistive random access memory (MRAM), achieving 1.7× higher throughput and 3× better energy efficiency than XR SoCs using NVM as background memory. The fabricated SoC prototype achieves an area efficiency of 65.2 GOp/s/mm2 and a peak energy efficiency of 8.84 TOp/J for DNN inference while supporting complex, heterogeneous application workloads, which combine ML with conventional signal processing and control.

Idioma originalInglés
Páginas (desde-hasta)2055-2069
Número de páginas15
PublicaciónIEEE Journal of Solid-State Circuits
Volumen59
N.º7
DOI
EstadoPublicada - 1 jul. 2024

Nota bibliográfica

Publisher Copyright:
© 1966-2012 IEEE.

Huella

Profundice en los temas de investigación de 'Siracusa: A 16 nm Heterogenous RISC-V SoC for Extended Reality With At-MRAM Neural Engine'. En conjunto forman una huella única.

Citar esto