Searching nontrivial magnetic equilibria using the deflated Newton method

Jaime Cisternas*, Andrés Concha

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Nonlinear systems that model physical experiments often have many equilibrium configurations, and the number of these static solutions grows with the number of degrees of freedom and the presence of symmetries. It is impossible to know a priori how many equilibria exist and which ones are stable or relevant, therefore from the modeler's perspective, an exhaustive search and symmetry classification in the space of solutions are necessary. With this purpose in mind, the method of deflation (introduced by Farrell as a modification of the classic Newton iterative method) offers a systematic way of finding every possible solution of a set of equations. In this contribution we apply deflated Newton and deflated continuation methods to a model of macroscopic magnetic rotors, and find hundreds of new equilibria that can be classified according to their symmetry. We assess the benefits and limitations of the method for finding branches of solutions in the presence of a symmetry group, and explore the high-dimensional basins of attraction of the method in selected 2-dimensional sections, illustrating the effect of deflation on the convergence.

Idioma originalInglés
Número de artículo114468
Páginas (desde-hasta)1-11
Número de páginas11
PublicaciónChaos, Solitons and Fractals
Volumen179
DOI
EstadoPublicada - feb. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 Elsevier Ltd

Huella

Profundice en los temas de investigación de 'Searching nontrivial magnetic equilibria using the deflated Newton method'. En conjunto forman una huella única.

Citar esto