SBIR-BYOL: a self-supervised sketch-based image retrieval model

Jose M. Saavedra*, Javier Morales*, Nils Murrugarra-Llerena*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Sketch-based image retrieval is demanding interest in the computer vision community due to its relevance in the visual perception system and its potential application in a wide diversity of industries. In the literature, we observe significant advances when the models are evaluated in public datasets. However, when assessed in real environments, the performance drops drastically. The big problem is that the SOTA SBIR models follow a supervised regimen, strongly depending on a considerable amount of labeled sketch-photo pairs, which is unfeasible in real contexts. Therefore, we propose SBIR-BYOL, an extension of the well-known BYOL, to work in a bimodal scenario for sketch-based image retrieval. To this end, we also propose a two-stage self-supervised training methodology, exploiting existing sketch-photo pairs and contour-photo pairs generated from photographs of a target catalog. We demonstrate the benefits of our model for the eCommerce environments, where searching is a critical component. Here, our self-supervised SBIR model shows an increase of over 60 % of mAP.

Idioma originalInglés
Páginas (desde-hasta)5395-5408
Número de páginas14
PublicaciónNeural Computing and Applications
Volumen35
N.º7
DOI
EstadoPublicada - mar. 2023

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.

Huella

Profundice en los temas de investigación de 'SBIR-BYOL: a self-supervised sketch-based image retrieval model'. En conjunto forman una huella única.

Citar esto