Regularized minimax probability machine.

Sebastián Maldonado*, Miguel Carrasco, Julio López

*Autor correspondiente de este trabajo

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

In this paper, we propose novel second-order cone programming formulations for binary classification, by extending the Minimax Probability Machine (MPM) approach. Inspired by Support Vector Machines, a regularization term is included in the MPM and Minimum Error Minimax Probability Machine (MEMPM) methods. This inclusion reduces the risk of obtaining ill-posed estimators, stabilizing the problem, and, therefore, improving the generalization performance. Our approaches are first derived as linear methods, and subsequently extended as kernel-based strategies for nonlinear classification. Experiments on well-known binary classification datasets demonstrate the virtues of the regularized formulations in terms of predictive performance.

Idioma originalInglés
Páginas (desde-hasta)127-135
Número de páginas9
PublicaciónKnowledge-Based Systems
Volumen177
DOI
EstadoPublicada - 1 ago. 2019

Nota bibliográfica

Publisher Copyright:
© 2019 Elsevier B.V.

Huella

Profundice en los temas de investigación de 'Regularized minimax probability machine.'. En conjunto forman una huella única.

Citar esto