Real-time thermal dynamic analysis of a house using RC models and joint state-parameter estimation

Yong Li, Juan Castiglione, Rodrigo Astroza, Yuxiang Chen

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

To enable optimal building energy management in response to the ever-changing building and boundary conditions, it is critical to have numerical models that can provide accurate online prediction based on economically measurable inputs and feedback. The present study explores the capabilities of using the unscented Kalman filter (UKF) in combination with resistance-capacitance (RC) models for online estimation of the thermal dynamics of single detached houses. A joint state-parameter UKF estimation approach is applied to estimate unknown state and model parameters by using fictitious process equations to augment the state vector to include model parameters. The performance of this approach is evaluated by comparing the estimated state values to the monitored data. In addition, the prediction capability of the updated model is also investigated. The estimation procedure, mathematical operations, and result analysis are presented in detail. The remarkable model performance achieved shows that the UKF can efficiently improve RC models’ predictability and enable timely online model updating and response prediction.
Idioma originalInglés estadounidense
PublicaciónBuilding and Environment
Volumen188
EstadoPublicada - 15 ene 2021

Huella Profundice en los temas de investigación de 'Real-time thermal dynamic analysis of a house using RC models and joint state-parameter estimation'. En conjunto forman una huella única.

Citar esto