Reaction-diffusion fronts and the butterfly set

Jaime Cisternas*, Kevin Rohe, Stefan Wehner

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

A single-species reaction-diffusion model is used for studying the coexistence of multiple stable steady states. In these systems, one can define a potential-like functional that contains the stability properties of the states, and the essentials of the motion of wave fronts in one-and two-dimensional space. Using a quintic polynomial for the reaction term and taking advantage of the well-known butterfly bifurcation, we analyze the different scenarios involving the competition of two and three stable steady states, based on equipotential curves and points in parameter space. The predicted behaviors, including a front splitting instability, are contrasted to numerical integrations of reaction fronts in two dimensions.
Idioma originalInglés
Número de artículo113138
PublicaciónChaos
Volumen30
N.º11
DOI
EstadoPublicada - 1 nov. 2020

Nota bibliográfica

Publisher Copyright:
© 2020 Author(s).

Huella

Profundice en los temas de investigación de 'Reaction-diffusion fronts and the butterfly set'. En conjunto forman una huella única.

Citar esto