Profit-based churn prediction based on Minimax Probability Machines

Sebastián Maldonado, Julio López, Carla Vairetti*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

40 Citas (Scopus)

Resumen

In this paper, we propose three novel profit-driven strategies for churn prediction. Our proposals extend the ideas of the Minimax Probability Machine, a robust optimization approach for binary classification that maximizes sensitivity and specificity using a probabilistic setting. We adapt this method and other variants to maximize the profit of a retention campaign in the objective function, unlike most profit-based strategies that use profit metrics to choose between classifiers, and/or to define the optimal classification threshold given a probabilistic output. A first approach is developed as a learning machine that does not include a regularization term, and subsequently extended by including the LASSO and Tikhonov regularizers. Experiments on well-known churn prediction datasets show that our proposal leads to the largest profit in comparison with other binary classification techniques.

Idioma originalInglés
Páginas (desde-hasta)273-284
Número de páginas12
PublicaciónEuropean Journal of Operational Research
Volumen284
N.º1
DOI
EstadoPublicada - 1 jul. 2020
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2019 Elsevier B.V.

Huella

Profundice en los temas de investigación de 'Profit-based churn prediction based on Minimax Probability Machines'. En conjunto forman una huella única.

Citar esto