TY - JOUR
T1 - Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy
AU - Sarker, Suchismita
AU - Scholz-Romero, Katherin
AU - Perez, Alejandra
AU - Illanes, Sebastian E.
AU - Mitchell, Murray D.
AU - Rice, Gregory E.
AU - Salomon, Carlos
N1 - Publisher Copyright:
© 2014 Sarker et al.; licensee BioMed Central Ltd.
PY - 2014/8/8
Y1 - 2014/8/8
N2 - Background: Human placenta releases specific nanovesicles (i.e. exosomes) into the maternal circulation during pregnancy, however, the presence of placenta-derived exosomes in maternal blood during early pregnancy remains to be established. The aim of this study was to characterise gestational age related changes in the concentration of placenta-derived exosomes during the first trimester of pregnancy (i.e. from 6 to 12 weeks) in plasma from women with normal pregnancies.Methods: A time-series experimental design was used to establish pregnancy-associated changes in maternal plasma exosome concentrations during the first trimester. A series of plasma were collected from normal healthy women (10 patients) at 6, 7, 8, 9, 10, 11 and 12 weeks of gestation (n = 70). We measured the stability of these vesicles by quantifying and observing their protein and miRNA contents after the freeze/thawing processes. Exosomes were isolated by differential and buoyant density centrifugation using a sucrose continuous gradient and characterised by their size distribution and morphology using the nanoparticles tracking analysis (NTA; Nanosight™) and electron microscopy (EM), respectively. The total number of exosomes and placenta-derived exosomes were determined by quantifying the immunoreactive exosomal marker, CD63 and a placenta-specific marker (Placental Alkaline Phosphatase PLAP).Results: These nanoparticles are extraordinarily stable. There is no significant decline in their yield with the freeze/thawing processes or change in their EM morphology. NTA identified the presence of 50-150 nm spherical vesicles in maternal plasma as early as 6 weeks of pregnancy. The number of exosomes in maternal circulation increased significantly (ANOVA, p = 0.002) with the progression of pregnancy (from 6 to 12 weeks). The concentration of placenta-derived exosomes in maternal plasma (i.e. PLAP+) increased progressively with gestational age, from 6 weeks 70.6 ± 5.7 pg/ml to 12 weeks 117.5 ± 13.4 pg/ml. Regression analysis showed that weeks is a factor that explains for >70% of the observed variation in plasma exosomal PLAP concentration while the total exosome number only explains 20%.Conclusions: During normal healthy pregnancy, the number of exosomes present in the maternal plasma increased significantly with gestational age across the first trimester of pregnancy. This study is a baseline that provides an ideal starting point for developing early detection method for women who subsequently develop pregnancy complications, clinically detected during the second trimester. Early detection of women at risk of pregnancy complications would provide an opportunity to develop and evaluate appropriate intervention strategies to limit acute adverse sequel.
AB - Background: Human placenta releases specific nanovesicles (i.e. exosomes) into the maternal circulation during pregnancy, however, the presence of placenta-derived exosomes in maternal blood during early pregnancy remains to be established. The aim of this study was to characterise gestational age related changes in the concentration of placenta-derived exosomes during the first trimester of pregnancy (i.e. from 6 to 12 weeks) in plasma from women with normal pregnancies.Methods: A time-series experimental design was used to establish pregnancy-associated changes in maternal plasma exosome concentrations during the first trimester. A series of plasma were collected from normal healthy women (10 patients) at 6, 7, 8, 9, 10, 11 and 12 weeks of gestation (n = 70). We measured the stability of these vesicles by quantifying and observing their protein and miRNA contents after the freeze/thawing processes. Exosomes were isolated by differential and buoyant density centrifugation using a sucrose continuous gradient and characterised by their size distribution and morphology using the nanoparticles tracking analysis (NTA; Nanosight™) and electron microscopy (EM), respectively. The total number of exosomes and placenta-derived exosomes were determined by quantifying the immunoreactive exosomal marker, CD63 and a placenta-specific marker (Placental Alkaline Phosphatase PLAP).Results: These nanoparticles are extraordinarily stable. There is no significant decline in their yield with the freeze/thawing processes or change in their EM morphology. NTA identified the presence of 50-150 nm spherical vesicles in maternal plasma as early as 6 weeks of pregnancy. The number of exosomes in maternal circulation increased significantly (ANOVA, p = 0.002) with the progression of pregnancy (from 6 to 12 weeks). The concentration of placenta-derived exosomes in maternal plasma (i.e. PLAP+) increased progressively with gestational age, from 6 weeks 70.6 ± 5.7 pg/ml to 12 weeks 117.5 ± 13.4 pg/ml. Regression analysis showed that weeks is a factor that explains for >70% of the observed variation in plasma exosomal PLAP concentration while the total exosome number only explains 20%.Conclusions: During normal healthy pregnancy, the number of exosomes present in the maternal plasma increased significantly with gestational age across the first trimester of pregnancy. This study is a baseline that provides an ideal starting point for developing early detection method for women who subsequently develop pregnancy complications, clinically detected during the second trimester. Early detection of women at risk of pregnancy complications would provide an opportunity to develop and evaluate appropriate intervention strategies to limit acute adverse sequel.
KW - Exosomes
KW - Fetal-maternal exchange
KW - Placenta
KW - Pregnancy
KW - Exosomes
KW - Fetal-maternal exchange
KW - Placenta
KW - Pregnancy
UR - http://www.scopus.com/inward/record.url?scp=84908300234&partnerID=8YFLogxK
U2 - 10.1186/1479-5876-12-204
DO - 10.1186/1479-5876-12-204
M3 - Article
C2 - 25104112
AN - SCOPUS:84908300234
SN - 1479-5876
VL - 12
JO - Journal of Translational Medicine
JF - Journal of Translational Medicine
IS - 1
M1 - 204
ER -