Resumen
We show the existence of periodic exploding dissipative solitons. These nonchaotic explosions appear when higher-order nonlinear and dispersive effects are added to the complex cubic-quintic Ginzburg-Landau equation modeling fiber soliton lasers. This counterintuitive phenomenon is the result of period-halving bifurcations leading to order (periodic explosions), followed by period-doubling bifurcations leading to chaos (chaotic explosions).
Idioma original | Inglés |
---|---|
Número de artículo | 031801 |
Publicación | Physical Review A |
Volumen | 93 |
N.º | 3 |
DOI | |
Estado | Publicada - 4 mar. 2016 |
Nota bibliográfica
Publisher Copyright:© 2016 American Physical Society.