Pattern formation via intermittence from microscopic deterministic dynamics

Marco Hernández*, Daniel Escaff, Ricardo Finger

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)


We propose a one-dimensional lattice model, inspired by population dynamics interaction. The model combines a variable coupling range with the Allee effect. The system is capable of exhibiting pattern formation that is similar to what occurs in similar continuous models for population dynamics. However, the formation features are quite different; in this case the pattern emerges from a disorder state via intermittence. We analytically estimated the selected wavelength of the formed pattern and numerically studied fluctuations around the mean wavelength. We also comment on the relationship between intermittence and the edge of chaos as well as sensitivity to initial conditions. Next, we present an analytical prediction of the influence of the world size on the intermittent regime which is in good agreement with the numerical observations. Moreover, the last calculation provided us an alternative way to compute the pattern wavelength. Finally, we discuss the continuous limit of our lattice model.
Idioma originalInglés
Número de artículo056218
PublicaciónPhysical Review E
EstadoPublicada - 29 may. 2012

Nota bibliográfica

Publisher Copyright: © 2012 American Physical Society.


Profundice en los temas de investigación de 'Pattern formation via intermittence from microscopic deterministic dynamics'. En conjunto forman una huella única.

Citar esto