Parameter estimation of resistor-capacitor models for building thermal dynamics using the unscented Kalman filter

Yuxiang Chen, Juan Castiglione, Rodrigo Astroza, Yong Li

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Accurate and computationally efficient building energy models are critical to the development of online or pseudo-online control strategies and other building management activities. However, such models need to overcome the large uncertainty involved with continuously changing occupant activities and building status. The present study uses unscented Kalman filtering (UKF) in the model parameter estimation for simple yet accurate resistor-capacitor (RC) models to develop reliable building energy models. The estimation procedure, mathematical operations, and other estimation enhancing techniques are presented in detail. Synthetic and measured data were used to validate and evaluate the methodology. The obtained model shows better performance when compared with a model that was calibrated using genetic algorithms in a previous study. This remarkable model performance shows that UKF can enable timely online model update and improve the model predictability.

Idioma originalInglés
Número de artículo101639
PublicaciónJournal of Building Engineering
Volumen34
DOI
EstadoPublicada - feb 2021

Nota bibliográfica

Publisher Copyright:
© 2020 Elsevier Ltd

Huella

Profundice en los temas de investigación de 'Parameter estimation of resistor-capacitor models for building thermal dynamics using the unscented Kalman filter'. En conjunto forman una huella única.

Citar esto