OWAdapt: An adaptive loss function for deep learning using OWA operators

Sebastián Maldonado, Carla Vairetti*, Katherine Jara, Miguel Carrasco, Julio López

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva


In this paper, we propose a novel adaptive loss function for enhancing deep learning performance in classification tasks. Specifically, we redefine the cross-entropy loss to effectively address class-level noise conditions, including the challenging problem of class imbalance. Our approach introduces aggregation operators to improve classification accuracy. The rationale behind our proposed method lies in the iterative up-weighting of class-level components within the loss function, focusing on those with larger errors. To achieve this, we employ the ordered weighted average (OWA) operator and combine it with an adaptive scheme for gradient-based learning. The main finding is that our method outperforms other commonly used loss functions, such as the standard cross-entropy or focal loss, across various binary and multiclass classification tasks. Furthermore, we explore the influence of hyperparameters associated with the OWA operators and propose a default configuration that performs well across different experimental settings.

Idioma originalInglés
Número de artículo111022
PublicaciónKnowledge-Based Systems
EstadoPublicada - 25 nov. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 Elsevier B.V.


Profundice en los temas de investigación de 'OWAdapt: An adaptive loss function for deep learning using OWA operators'. En conjunto forman una huella única.

Citar esto