On the continuity of the Walras correspondence in distributional economies with an infinite-dimensional commodity space

Sebastián Cea-Echenique*, Matías Fuentes*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Distributional economies are defined by a probability distribution in the space of characteristics where the commodity space is an ordered separable Banach space. We characterize the continuity of the equilibrium correspondence and an associated stability concept which allows us to give a positive answer to an open question about the continuity of the Walras correspondence in infinite-dimensional spaces. As a byproduct, we study a stability concept where differentiability assumptions are not required, as is usual in the literature on regularity. Moreover, since distributional economies do not specify a space of agents, our setting encompasses several results in the literature on large economies.

Idioma originalInglés
Páginas (desde-hasta)61-69
Número de páginas9
PublicaciónMathematical Social Sciences
Volumen129
DOI
EstadoPublicada - may. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 Elsevier B.V.

Huella

Profundice en los temas de investigación de 'On the continuity of the Walras correspondence in distributional economies with an infinite-dimensional commodity space'. En conjunto forman una huella única.

Citar esto