Normal and anomalous random walks of 2-d solitons

Jaime Cisternas, Tony Albers, Günter Radons

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

Solitons, which describe the propagation of concentrated beams of light through nonlinear media, can exhibit a variety of behaviors as a result of the intrinsic dissipation, diffraction, and the nonlinear effects. One of these phenomena, modeled by the complex Ginzburg-Landau equation, is chaotic explosions, transient enlargements of the soliton that may induce random transversal displacements, which in the long run lead to a random walk of the soliton center. As we show in this work, the transition from nonmoving to moving solitons is not a simple bifurcation but includes a sequence of normal and anomalous random walks. We analyze their statistics with the distribution of generalized diffusivities, a novel approach that has been used successfully for characterizing anomalous diffusion.
Idioma originalInglés estadounidense
PublicaciónChaos
Volumen28
N.º7
DOI
EstadoPublicada - 1 jul 2018

Huella Profundice en los temas de investigación de 'Normal and anomalous random walks of 2-d solitons'. En conjunto forman una huella única.

Citar esto