Non-unique results of collisions of quasi-one-dimensional dissipative solitons

Orazio Descalzi*, Helmut R. Brand

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

We investigate collisions of quasi-one-dimensional dissipative solitons (DSs) for a large class of initial conditions, which are not temporally asymptotic quasi-one-dimensional DSs. For the case of sufficiently small approach velocity and sufficiently large values of the dissipative cross-coupling between the counter-propagating DSs, we find non-unique results for the outcome of collisions. We demonstrate that these non-unique results are intrinsically related to a modulation instability along the crest of the quasi-one-dimensional objects. As a model, we use coupled cubic–quintic complex Ginzburg–Landau equations. Among the final results found are stationary and oscillatory compound states as well as more complex assemblies consisting of quasi-one-dimensional and localized states. We analyse to what extent the final results can be described by the solutions of one cubic–quintic complex Ginzburg–Landau equation with effective parameters.
Idioma originalInglés
Número de artículo20150115
PublicaciónPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volumen373
N.º2056
DOI
EstadoPublicada - 13 dic. 2015

Nota bibliográfica

Publisher Copyright:
© 2015 The Author(s) Published by the Royal Society. All rights reserved.

Huella

Profundice en los temas de investigación de 'Non-unique results of collisions of quasi-one-dimensional dissipative solitons'. En conjunto forman una huella única.

Citar esto