Resumen
We study the influence of noise on the spatially localized, temporally regular states (stationary, one frequency, two frequencies) in the regime of anomalous dispersion for the cubic-quintic complex Ginzburg-Landau equation as a function of the bifurcation parameter. We find that noise of a fairly small strength η is sufficient to reach a chaotic state with exploding dissipative solitons. That means that noise can induce explosions over a fairly large range of values of the bifurcation parameter μ. Three different routes to chaos with exploding dissipative solitons are found as a function of μ. As diagnostic tools we use the separation to characterize chaotic behavior and the energy to detect spatially localized explosive behavior as a function of time.
Idioma original | Inglés |
---|---|
Número de artículo | 015205 |
Publicación | Physical Review E |
Volumen | 85 |
N.º | 1 |
DOI | |
Estado | Publicada - 31 ene. 2012 |