Multiplicative noise can induce a velocity change of propagating dissipative solitons

Orazio Descalzi*, Carlos Cartes, Helmut R. Brand

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

We investigate the influence of spatially homogeneous multiplicative noise on propagating dissipative solitons (DSs) of the cubic complex Ginzburg-Landau equation stabilized by nonlinear gradient terms. Here we focus on the nonlinear gradient terms, in particular on the influence of the Raman term and the delayed nonlinear gain. We show that a fairly small amount of multiplicative noise can lead to a change in the mean velocity for such systems. This effect is exclusively due to the presence of the stabilizing nonlinear gradient terms. For a range of parameters we find a velocity change proportional to the noise intensity for the Raman term and for delayed nonlinear gain. We note that the dissipative soliton decreases the modulus of its velocity when only one type of nonlinear gradient is present. We present a straightforward mean field analysis to capture this simple scaling law. At sufficiently high noise strength the nonlinear gradient stabilized DSs collapse.
Idioma originalInglés
Número de artículoL050201
PublicaciónPhysical Review E
Volumen103
N.º5
DOI
EstadoPublicada - 1 may. 2021

Nota bibliográfica

Publisher Copyright:
© 2021 American Physical Society.

Palabras clave

  • Ruido de fase
  • Solitones
  • Velocidad

Huella

Profundice en los temas de investigación de 'Multiplicative noise can induce a velocity change of propagating dissipative solitons'. En conjunto forman una huella única.

Citar esto