Resumen
When propagated through atmospheric turbulence, Orbital Angular Momentum (OAM) modes suffer a loss of orthogonality that can compromise their detection and classification. The problem is more challenging when user information encoded on multi-state OAM superpositions needs to be detected with high probability. Optical sensors like the Shack-Hartmann detector or the Mode Sorter are candidates for such task. We describe how OAM histograms derived from such detectors can be used for decoding the original data symbols. We propose Machine Learning strategies for a reliable classification of the histogram patterns obtained with 4-mode superpositions propagated over a 1 km range in weak to intermediate turbulence. © 2021 SPIE.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Laser Communication and Propagation through the Atmosphere and Oceans X |
Editores | Jaime A. Anguita, Jeremy P. Bos, David T. Wayne |
Editorial | SPIE |
ISBN (versión digital) | 9781510645066 |
DOI | |
Estado | Publicada - 2021 |
Evento | Laser Communication and Propagation through the Atmosphere and Oceans X 2021 - San Diego, Estados Unidos Duración: 1 ago. 2021 → 5 ago. 2021 |
Serie de la publicación
Nombre | Proceedings of SPIE - The International Society for Optical Engineering |
---|---|
Volumen | 11834 |
ISSN (versión impresa) | 0277-786X |
ISSN (versión digital) | 1996-756X |
Conferencia
Conferencia | Laser Communication and Propagation through the Atmosphere and Oceans X 2021 |
---|---|
País/Territorio | Estados Unidos |
Ciudad | San Diego |
Período | 1/08/21 → 5/08/21 |
Nota bibliográfica
Publisher Copyright:© 2021 SPIE.