Insights into delayed ettringite formation damage through acoustic nonlinearity

Mehdi Rashidi, Alvaro Paul, Jin Yeon Kim, Laurence J. Jacobs, Kimberly E. Kurtis*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

21 Citas (Scopus)


A nonlinear acoustic approach for the detection and quantification of damage in mortars affected by delayed ettringite formation (DEF) is used to provide insights into the degradation mechanism at the microscale and its correlation with bulk expansion. The nonlinear acoustic technique, Nonlinear Impact Resonance Acoustic Spectroscopy (NIRAS) successfully differentiates among mortars experiencing various amounts of expansion and microstructurally-evident distress due to DEF. Results indicate that mortars are damaged both during the early-age high-temperature curing and subsequent 23 °C-limewater curing. However, the time of initiation of expansion occurs earlier for samples showing higher damage level (as measured by average nonlinearity parameter) at the end of high-temperature curing. During the exposure period, the ratio of absolute maximum to the initial average nonlinearity parameter of DEF-affected mortars varies from 3 to 30, indicating that the DEF damage can increase more than an order of magnitude greater than that experienced during the high-temperature curing.
Idioma originalInglés
Páginas (desde-hasta)1-8
Número de páginas8
PublicaciónCement and Concrete Research
EstadoPublicada - 1 may. 2017

Nota bibliográfica

Publisher Copyright:
© 2017 Elsevier Ltd

Palabras clave

  • Delayed ettringite formation (DEF) (C)
  • Expansion (C)
  • Microcracking (B)
  • Nonlinear acoustics
  • Thermal treatment (A)


Profundice en los temas de investigación de 'Insights into delayed ettringite formation damage through acoustic nonlinearity'. En conjunto forman una huella única.

Citar esto