Implementation of Bayesian Model Updating in Five-Story Building Using Different Observations

Oscar D. Hurtado*, Albert R. Ortíz, Daniel Gómez, Rodrigo Astroza

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Simplifications and theoretical assumptions are often incorporated into numerical modeling of structures; however, these assumptions may reduce the accuracy of simulation results. Model updating techniques have been developed to minimize the error between experimental response and modeled structures by updating their parameters based on observed data. Structural numerical models are typically constructed using a deterministic approach, obtaining a single best-estimated value for each structural parameter. However, structural models are often complex and involve many uncertain variables, making it impossible to find a unique solution that captures all the variability. Updating techniques using Bayesian inference (BI) have been developed to quantify parametric uncertainty in analytical models. This chapter presents the implementation of BI in the parametric updating of a five-story building model and the quantification of associated uncertainty. The Bayesian framework is implemented to update the model parameters based on experimental information provided by modal frequencies and mode shapes. The main advantage of this approach is considering the uncertainty in the experimental data, leading to a better representation of the actual building behavior. Additionally, the implications of Bayesian modeling are discussed, highlighting the importance and implications of using a multivariate normal likelihood function in the analysis. The results show that this Bayesian model updating approach effectively allows for a statistically rigorous update of model parameters, characterizing the uncertainty and increasing confidence in the model’s predictions. This is particularly useful in engineering applications where model accuracy is critical.

Idioma originalInglés
Título de la publicación alojadaModel Validation and Uncertainty Quantification, Proceedings of the 42nd IMAC, A Conference and Exposition on Structural Dynamics 2024
EditoresRoland Platz, Garrison Flynn, Scott Ouellette, Kyle Neal
EditorialSpringer
Páginas141-146
Número de páginas6
ISBN (versión impresa)9783031688928
DOI
EstadoPublicada - 2025
Evento42nd IMAC, A Conference and Exposition on Structural Dynamics, IMAC 2024 - Orlando, Estados Unidos
Duración: 29 ene. 20241 feb. 2024

Serie de la publicación

NombreConference Proceedings of the Society for Experimental Mechanics Series
ISSN (versión impresa)2191-5644
ISSN (versión digital)2191-5652

Conferencia

Conferencia42nd IMAC, A Conference and Exposition on Structural Dynamics, IMAC 2024
País/TerritorioEstados Unidos
CiudadOrlando
Período29/01/241/02/24

Nota bibliográfica

Publisher Copyright:
© The Society for Experimental Mechanics, Inc. 2025.

Huella

Profundice en los temas de investigación de 'Implementation of Bayesian Model Updating in Five-Story Building Using Different Observations'. En conjunto forman una huella única.

Citar esto