TY - JOUR
T1 - IL17/IL17RA as a novel signaling axis driving mesenchymal stem cell therapeutic function in experimental autoimmune encephalomyelitis
AU - Kurte, Mónica
AU - Luz-Crawford, Patricia
AU - Vega-Letter, Ana María
AU - Contreras, Rafael A.
AU - Tejedor, Gautier
AU - Elizondo-Vega, Roberto
AU - Martinez-Viola, Luna
AU - Fernández-O'Ryan, Catalina
AU - Figueroa, Fernando E.
AU - Jorgensen, Christian
AU - Djouad, Farida
AU - Carrión, Flavio
N1 - Publisher Copyright:
© 2018 Kurte, Luz-Crawford, Vega-Letter, Contreras, Tejedor, Elizondo-Vega, Martinez-Viola, Fernández-O'Ryan, Figueroa, Jorgensen, Djouad and Carrión.
PY - 2018/4/30
Y1 - 2018/4/30
N2 - The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA-/- MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA-/- MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA-/- MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.
AB - The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA-/- MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA-/- MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA-/- MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.
KW - Cellular therapy
KW - Experimental autoimmune encephalomyelitis
KW - IL17
KW - IL17RA
KW - Mesenchymal stem cells
UR - http://www.scopus.com/inward/record.url?scp=85046673005&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2018.00802
DO - 10.3389/fimmu.2018.00802
M3 - Article
AN - SCOPUS:85046673005
SN - 1664-3224
VL - 9
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - APR
M1 - 802
ER -