Flue gas desulfurization (FGD) fly ash as a sustainable, safe alternative for cement-based materials.

Ivan Navarrete, Felipe Vargas, Patricia Martinez, Álvaro Rafael Paul Quiroz*, Mauricio Lopez

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

44 Citas (Scopus)

Resumen

The reduction in fly ash production in coal-fired power plants has created an opportunity to explore alternative types of fly ashes previously deemed unfit for use in concrete. In plants using flue gas desulfurization (FGD) processes, fly ash could contain high amounts of sulfur oxides, making its use in concrete inadvisable. However, the type of sulfur compound present in a fly ash strongly impacts its performance in concrete. In this study, two types of fly ash were used to evaluate the effect of sulfur oxides on mortar mixtures incorporating fly ash as supplementary cementitious material (SCM); one from an FGD unit, with high sulfur oxide content (in the form of hannebachite), and the other generated in a system without FGD, with negligible sulfur oxide. Calorimetry results show that hannebachite can effectively control C3A hydration similar to gypsum; however, its presence in FGD fly ash does not induce deleterious expansion associated with internal sulfate attack in mortars. TGA and XRD analyses suggest that hannebachite has lower reactivity than sulfate. Hannebachite not only maintains the pozzolanic reactivity of the fly ash, but its fineness may promote OPC hydration, increasing compressive strength. The results of this study indicate that FGD fly ash can be used as an SCM, allowing more sustainable concrete production.
Idioma originalInglés
Número de artículo124646
PublicaciónJournal of Cleaner Production
Volumen283
DOI
EstadoPublicada - 10 feb. 2021

Nota bibliográfica

Publisher Copyright:
© 2020 Elsevier Ltd

Huella

Profundice en los temas de investigación de 'Flue gas desulfurization (FGD) fly ash as a sustainable, safe alternative for cement-based materials.'. En conjunto forman una huella única.

Citar esto