Resumen
A novel approach to deal with modeling uncertainty when updating mechanics-based finite element (FE) models is presented. In this method, a dual adaptive filtering approach is adopted, where the Unscented Kalman filter (UKF) is used to estimate the unknown parameters of the nonlinear FE model and a linear Kalman filter (KF) is employed to estimate the diagonal terms of the covariance matrix of the simulation error vector based on a covariance-matching technique. Numerically simulated response data of a two-dimensional three-story three-bay steel frame structure with eight unknown material model parameters subjected to seismic base excitation is employed to illustrate and validate the proposed methodology. The results of the validation studies show that the proposed approach significantly outperforms the parameter-only estimation approach widely investigated and used in the literature.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Model Validation and Uncertainty Quantification, Volume 3 - Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 |
Editores | Robert Barthorpe |
Editorial | Springer New York LLC |
Páginas | 211-221 |
Número de páginas | 11 |
ISBN (versión impresa) | 9783030120740 |
DOI | |
Estado | Publicada - 2020 |
Evento | 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019 - Orlando, Estados Unidos Duración: 28 ene. 2019 → 31 ene. 2019 |
Serie de la publicación
Nombre | Conference Proceedings of the Society for Experimental Mechanics Series |
---|---|
ISSN (versión impresa) | 2191-5644 |
ISSN (versión digital) | 2191-5652 |
Conferencia
Conferencia | 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019 |
---|---|
País/Territorio | Estados Unidos |
Ciudad | Orlando |
Período | 28/01/19 → 31/01/19 |
Nota bibliográfica
Publisher Copyright:© Society for Experimental Mechanics, Inc. 2020.