Exploding dissipative solitons: The analog of the Ruelle-Takens route for spatially localized solutions

Orazio Descalzi*, Carlos Cartes, Jaime Cisternas, Helmut R. Brand

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

45 Citas (Scopus)

Resumen

We investigate the route to exploding dissipative solitons in the complex cubic-quintic Ginzburg-Landau equation, as the bifurcation parameter, the distance from linear onset, is increased. We find for a large class of initial conditions the sequence: stationary localized solutions, oscillatory localized solutions with one frequency, oscillatory localized solutions with two frequencies, and exploding localized solutions. The transition between localized solutions with one and with two frequencies, respectively, is analyzed in detail. It is found to correspond to a forward Hopf bifurcation for these localized solutions as the bifurcation parameter is increased. In addition, we make use of power spectra to characterize all time-dependent states. On the basis of all information available, we conclude that the sequence oscillatory localized solutions with one frequency, oscillatory localized solutions with two frequencies, and exploding dissipative solitons can be interpreted as the analog of the Ruelle-Takens-Newhouse route to chaos for spatially localized solutions.
Idioma originalInglés
Número de artículo056214
PublicaciónPhysical Review E
Volumen83
N.º5
DOI
EstadoPublicada - 25 may. 2011

Palabras clave

  • Bifurcation parameter
  • Cubic-quintic Ginzburg-Landau equation
  • Dissipative solitons
  • Initial conditions
  • Large class
  • Localized solutions
  • One frequency
  • Power-spectra
  • Time-dependent state

Huella

Profundice en los temas de investigación de 'Exploding dissipative solitons: The analog of the Ruelle-Takens route for spatially localized solutions'. En conjunto forman una huella única.

Citar esto