Energy-Efficient Edge Inference on Multi-Channel Streaming Data in 28nm HKMG FeFET Technology

S. Dutta, W. Chakraborty, J. Gomez, K. Ni, S. Joshi, S. Datta

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

We present a system implementing extremely energy-efficient inference on multi-channel biomedical-sensor data. We leverage Ferroelectric FET (FeFET) to perform classification directly on analog sensor signals. We demonstrate: (i) voltage-controlled multi-domain ferroelectric polarization switching to obtain 8 distinct transconductance (gm) states in a 28nm HKMG FeFET technology [1], (ii) 30x tunable range in gm over the bandwidth of interest, (iii) successful implementation of artifact removal, feature extraction and classification for seizure detection from CHB-MIT EEG dataset with 98.46% accuracy and < 0.375/hr. false alarm rate for two patients, (iv) ultra-low energy of 47 fJ/MAC with 1,000x improvement in area compared to alternative mixed-signal MAC.

Idioma originalInglés
Título de la publicación alojada2019 Symposium on VLSI Technology, VLSI Technology 2019 - Digest of Technical Papers
EditorialInstitute of Electrical and Electronics Engineers Inc.
PáginasT38-T39
ISBN (versión digital)9784863487178
DOI
EstadoPublicada - jun. 2019
Publicado de forma externa
Evento39th Symposium on VLSI Technology, VLSI Technology 2019 - Kyoto, Japón
Duración: 9 jun. 201914 jun. 2019

Serie de la publicación

NombreDigest of Technical Papers - Symposium on VLSI Technology
Volumen2019-June
ISSN (versión impresa)0743-1562

Conferencia

Conferencia39th Symposium on VLSI Technology, VLSI Technology 2019
País/TerritorioJapón
CiudadKyoto
Período9/06/1914/06/19

Nota bibliográfica

Publisher Copyright:
© 2019 The Japan Society of Applied Physics.

Huella

Profundice en los temas de investigación de 'Energy-Efficient Edge Inference on Multi-Channel Streaming Data in 28nm HKMG FeFET Technology'. En conjunto forman una huella única.

Citar esto