Resumen
We present a system implementing extremely energy-efficient inference on multi-channel biomedical-sensor data. We leverage Ferroelectric FET (FeFET) to perform classification directly on analog sensor signals. We demonstrate: (i) voltage-controlled multi-domain ferroelectric polarization switching to obtain 8 distinct transconductance (gm) states in a 28nm HKMG FeFET technology [1], (ii) 30x tunable range in gm over the bandwidth of interest, (iii) successful implementation of artifact removal, feature extraction and classification for seizure detection from CHB-MIT EEG dataset with 98.46% accuracy and < 0.375/hr. false alarm rate for two patients, (iv) ultra-low energy of 47 fJ/MAC with 1,000x improvement in area compared to alternative mixed-signal MAC.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2019 Symposium on VLSI Technology, VLSI Technology 2019 - Digest of Technical Papers |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
Páginas | T38-T39 |
ISBN (versión digital) | 9784863487178 |
DOI | |
Estado | Publicada - jun. 2019 |
Publicado de forma externa | Sí |
Evento | 39th Symposium on VLSI Technology, VLSI Technology 2019 - Kyoto, Japón Duración: 9 jun. 2019 → 14 jun. 2019 |
Serie de la publicación
Nombre | Digest of Technical Papers - Symposium on VLSI Technology |
---|---|
Volumen | 2019-June |
ISSN (versión impresa) | 0743-1562 |
Conferencia
Conferencia | 39th Symposium on VLSI Technology, VLSI Technology 2019 |
---|---|
País/Territorio | Japón |
Ciudad | Kyoto |
Período | 9/06/19 → 14/06/19 |
Nota bibliográfica
Publisher Copyright:© 2019 The Japan Society of Applied Physics.