Efficient hybrid oversampling and intelligent undersampling for imbalanced big data classification

Carla Vairetti*, José Luis Assadi*, Sebastián Maldonado*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

Imbalanced classification is a well-known challenge faced by many real-world applications. This issue occurs when the distribution of the target variable is skewed, leading to a prediction bias toward the majority class. With the arrival of the Big Data era, there is a pressing need for efficient solutions to solve this problem. In this work, we present a novel resampling method called SMOTENN that combines intelligent undersampling and oversampling using a MapReduce framework. Both procedures are performed on the same pass over the data, conferring efficiency to the technique. The SMOTENN method is complemented with an efficient implementation of the neighborhoods related to the minority samples. Our experimental results show the virtues of this approach, outperforming alternative resampling techniques for small- and medium-sized datasets while achieving positive results on large datasets with reduced running times.

Idioma originalInglés
Número de artículo123149
Páginas (desde-hasta)1-11
Número de páginas11
PublicaciónExpert Systems with Applications
Volumen246
DOI
EstadoPublicada - 15 jul. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 Elsevier Ltd

Huella

Profundice en los temas de investigación de 'Efficient hybrid oversampling and intelligent undersampling for imbalanced big data classification'. En conjunto forman una huella única.

Citar esto