DLDENet: Deep Local Directional Embeddings with Increased Foreground Focal Loss for object detection

Fabian Souto Herrera, Jose M. Saavedra

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

We propose modifications to the RetinaNet architecture and Focal Loss [1] to improve the effectiveness of them in the context of object detection. We show that through normalizing the embeddings generated by each receptive field in the feature map, classifying them using cosine similarity, increasing the loss for the foreground anchors and forcing the dispersion of the classification vectors will improve the performance of the model. We test our proposal with the FlickrLogos-32 [2] dataset that contains 40 examples for each one of the 32 classes, achieving competitive results with respect to the state-of-the-art approaches with a precision of 0.975, a recall of 0.944, an accuracy of 0.949 and improving the mAP over the dataset from 0.657 with RetinaNet [1] to 0.775 using our new architecture DLDENet.

Idioma originalInglés
Título de la publicación alojada2019 38th International Conference of the Chilean Computer Science Society, SCCC 2019
EditorialIEEE Computer Society
ISBN (versión digital)9781728156132
DOI
EstadoPublicada - nov. 2019
Publicado de forma externa
Evento38th International Conference of the Chilean Computer Science Society, SCCC 2019 - Concepcion, Chile
Duración: 4 nov. 20199 nov. 2019

Serie de la publicación

NombreProceedings - International Conference of the Chilean Computer Science Society, SCCC
Volumen2019-November
ISSN (versión impresa)1522-4902

Conferencia

Conferencia38th International Conference of the Chilean Computer Science Society, SCCC 2019
País/TerritorioChile
CiudadConcepcion
Período4/11/199/11/19

Nota bibliográfica

Publisher Copyright:
© 2019 IEEE.

Huella

Profundice en los temas de investigación de 'DLDENet: Deep Local Directional Embeddings with Increased Foreground Focal Loss for object detection'. En conjunto forman una huella única.

Citar esto