Dissipative solitons stabilized by nonlinear gradients in one spatial dimension: From deterministic to stochastic aspects, and a perspective

Orazio Descalzi*, Carlos Cartes

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

The purpose of this article is twofold. Firstly, to investigate the formation of localized spatiotemporal chaos in the complex cubic Ginzburg–Landau equation including nonlinear gradient terms. We found a transition to spatiotemporal disorder via quasiperiodicity accompanied by the fact that incommensurate satellite peaks arise around the fundamental frequency and its harmonics. Secondly, we review the influence of multiplicative noise on stationary pulses stabilized by nonlinear gradients. Numerical simulations show surprising results that are explained analytically. We found that multiplicative noise can induce a velocity change of propagating dissipative solitons. This completes previous communications on the two issues addressed in O. Descalzi et al., (2019, 2021, 2022)
Idioma originalInglés
Número de artículo112703
PublicaciónChaos, Solitons and Fractals
Volumen164
DOI
EstadoPublicada - nov. 2022

Nota bibliográfica

Publisher Copyright:
© 2022

Palabras clave

  • Ginzburg–Landau equation
  • Dissipative solitons

Huella

Profundice en los temas de investigación de 'Dissipative solitons stabilized by nonlinear gradients in one spatial dimension: From deterministic to stochastic aspects, and a perspective'. En conjunto forman una huella única.

Citar esto