Resumen
To ensure homeostasis, ectothermic organisms adapt to environmental variations through molecular mechanisms. We previously reported that during the seasonal acclimatization of the common carp Cyprinus carpio, molecular and cellular functions are reprogrammed, resulting in distinctive traits. Importantly, the carp undergoes a drastic rearrangement of nucleolar components during adaptation. This ultrastructural feature reflects a fine modulation of rRNA gene transcription. Specifically, we identified the involvement of the transcription termination factor I (TTF-I) and Tip-5 (member of nucleolar remodeling complex, NoRC) in the control of rRNA transcription. Our results suggest that differential Tip5 enrichment is essential for silencing carp ribosomal genes and that the T0 element is key for regulating the ribosomal gene during the acclimatization process. Interestingly, the expression and content of Tip5 were significantly higher in winter than in summer. Since carp ribosomal gene expression is lower in the winter than in summer, and considering that expression concomitantly occurs with nucleolar ultrastructural changes of the acclimatization process, these results indicate that Tip5 importantly contributes to silencing the ribosomal genes. In conclusion, the current study provides novel evidence on the contributions of TTF-I and NoRC in the environmental reprogramming of ribosomal genes during the seasonal adaptation process in carp.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 315-321 |
Número de páginas | 7 |
Publicación | Biochemistry and Cell Biology |
Volumen | 94 |
N.º | 4 |
DOI | |
Estado | Publicada - 2016 |
Publicado de forma externa | Sí |
Nota bibliográfica
Publisher Copyright:© Published by NRC Research Press.