Cost-based feature selection for Support Vector Machines: An application in credit scoring

Sebastián Maldonado*, Juan Pérez, Cristián Bravo

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

118 Citas (Scopus)

Resumen

In this work we propose two formulations based on Support Vector Machines for simultaneous classification and feature selection that explicitly incorporate attribute acquisition costs. This is a challenging task for two main reasons: the estimation of the acquisition costs is not straightforward and may depend on multivariate factors, and the inter-dependence between variables must be taken into account for the modelling process since companies usually acquire groups of related variables rather than acquiring them individually. Mixed-integer linear programming models are proposed for constructing classifiers that constrain acquisition costs while classifying adequately. Experimental results using credit scoring datasets demonstrate the effectiveness of our methods in terms of predictive performance at a low cost compared to well-known feature selection approaches. © 2017 Elsevier B.V.
Idioma originalInglés
Páginas (desde-hasta)656-665
Número de páginas10
PublicaciónEuropean Journal of Operational Research
Volumen261
N.º2
DOI
EstadoPublicada - 1 sep. 2017

Nota bibliográfica

Publisher Copyright:
© 2017 Elsevier B.V.

Huella

Profundice en los temas de investigación de 'Cost-based feature selection for Support Vector Machines: An application in credit scoring'. En conjunto forman una huella única.

Citar esto