TY - JOUR
T1 - Constitutively activated dystrophic muscle fibroblasts show a paradoxical response to tgf-β and ctgf/ccn2
AU - Mezzano, Valeria
AU - Cabrera, Daniel
AU - Vial, Cecilia
AU - Brandan, Enrique
N1 - Publisher Copyright:
© 2007 (publisher). All Rights reserved.
PY - 2007
Y1 - 2007
N2 - Transforming growth factor beta (TGF-β) and connective tissue growth factor (CTGF) have been described to induce the production of extracellular matrix (ECM) proteins and have been reported to be increased in different fibrotic disorders. Skeletal muscle fibrosis is a common feature of Duchenne muscular dystrophy (DMD). The mdx mouse diaphragm is a good model for DMD since it reproduces the muscle degenerative and fibrotic changes. Fibronectin (FN) and proteoglycans (PG) are some of the ECM proteins upregulated in dystrophic conditions. In view of understanding the fibrotic process involved in DMD we have isolated fibroblasts from dystrophic mdx diaphragms. Here we report that regardless of the absence of degenerative myofibers, adult mdx diaphragm fibroblasts show increased levels of FN and condroitin/dermatan sulfate PGs synthesis. Fibroblasts isolated from non fibrotic tissue, such as 1 week old mice diaphragms or skin, do not present elevated FN levels. Furthermore, mdx fibroblast conditioned media is able to stimulate FN synthesis in control fibroblasts. Autocrine TGF-β signaling was unaltered in mdx cells. When control fibroblasts are exposed to TGF-β and CTGF, FN increases as expected. Paradoxically, in mdx cells it decreases in a concentration dependent manner and this decrease is not due to a downregulation of FN synthesis. According to this data we hypothesize that a pathological environment is able to reprogram fibroblasts into an activated phenotype which can be maintained through generations.
AB - Transforming growth factor beta (TGF-β) and connective tissue growth factor (CTGF) have been described to induce the production of extracellular matrix (ECM) proteins and have been reported to be increased in different fibrotic disorders. Skeletal muscle fibrosis is a common feature of Duchenne muscular dystrophy (DMD). The mdx mouse diaphragm is a good model for DMD since it reproduces the muscle degenerative and fibrotic changes. Fibronectin (FN) and proteoglycans (PG) are some of the ECM proteins upregulated in dystrophic conditions. In view of understanding the fibrotic process involved in DMD we have isolated fibroblasts from dystrophic mdx diaphragms. Here we report that regardless of the absence of degenerative myofibers, adult mdx diaphragm fibroblasts show increased levels of FN and condroitin/dermatan sulfate PGs synthesis. Fibroblasts isolated from non fibrotic tissue, such as 1 week old mice diaphragms or skin, do not present elevated FN levels. Furthermore, mdx fibroblast conditioned media is able to stimulate FN synthesis in control fibroblasts. Autocrine TGF-β signaling was unaltered in mdx cells. When control fibroblasts are exposed to TGF-β and CTGF, FN increases as expected. Paradoxically, in mdx cells it decreases in a concentration dependent manner and this decrease is not due to a downregulation of FN synthesis. According to this data we hypothesize that a pathological environment is able to reprogram fibroblasts into an activated phenotype which can be maintained through generations.
UR - http://www.scopus.com/inward/record.url?scp=56949092670&partnerID=8YFLogxK
U2 - 10.1007/s12079-008-0018-2
DO - 10.1007/s12079-008-0018-2
M3 - Article
AN - SCOPUS:56949092670
SN - 1873-9601
VL - 1
SP - 205
EP - 217
JO - Journal of Cell Communication and Signaling
JF - Journal of Cell Communication and Signaling
IS - 3-4
ER -