Competing ternary surface reaction CO + O2 +H2 on Ir(111)

Kevin Rohe*, Jaime Cisternas, Stefan Wehner

*Autor correspondiente de este trabajo

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

The CO oxidation on platinum-group metals under ultra-high-vacuum conditions is one of the most studied surface reactions. However, the presence of disturbing species and competing reactions are often neglected.One of the most interesting additional gases to be treated is hydrogen, due to its importance in technical applications and its inevitability under vacuum conditions. Adding hydrogen to the reaction of CO and O2 leads to more adsorbed species and competing reaction steps towards water formation. In this study, a model for approaching the competing surface reactions CO + O2 + H2 is presented and discussed. Using the framework of bifurcation theory, we show how the steady states of the extended system correspond to a swallowtail catastrophe set with a tristable regime within the swallowtail. We explore numerically the possibility of reaching all stable states and illustrate the experimental challenges such a system could pose. Lastly, an approximative firstprinciple approach to diffusion illustrates how up to three stable states balance each other while forming heterogeneous patterns.
Idioma originalInglés
Número de artículo20190712
PublicaciónProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volumen476
N.º2236
DOI
EstadoPublicada - 1 abr. 2020

Nota bibliográfica

Publisher Copyright:
© 2020 The Author(s) Published by the Royal Society. All rights reserved.

Palabras clave

  • Competitive surface reaction
  • Ir(111)
  • Langmuir-Hinshelwood mechanism
  • Reaction-diffusion system
  • Swallowtail catastrophe
  • Tristability

Huella

Profundice en los temas de investigación de 'Competing ternary surface reaction CO + O2 +H2 on Ir(111)'. En conjunto forman una huella única.

Citar esto