Collisions of pulses can lead to holes via front interaction in the cubic-quintic complex Ginzburg-Landau equation in an annular geometry

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

22 Citas (Scopus)

Resumen

We study the interaction of counterpropagating pulse solutions for two coupled complex cubic-quintic Ginzburg-Landau equations in an annular geometry. For small approach velocity we find as an outcome of such collisions several results including zigzag bound pulses, stationary bound states of 2π holes, zigzag 2π holes, stationary bound states of π holes, zigzag bound states of π holes, propagating 2π holes, and propagating π holes as the real part of the cubic cross coupling between the counterpropagating waves is increased. We characterize in detail the collisions giving rise to the three states involving π holes as an outcome.
Idioma originalInglés estadounidense
PublicaciónPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volumen74
N.º6
DOI
EstadoPublicada - 1 ene. 2006

Huella

Profundice en los temas de investigación de 'Collisions of pulses can lead to holes via front interaction in the cubic-quintic complex Ginzburg-Landau equation in an annular geometry'. En conjunto forman una huella única.

Citar esto