Classification of multiple-state OAM superpositions using convolutional neural networks

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The analysis of superpositions of Orbital Angular Momentum (OAM) modes is a challenging problem, particularly when atmospheric turbulence is present or when the phase structure of the wavefront is not available. In such conditions it is not possible to correct the distortions and reconstruct the vorticial phase structure: the rings and petals that characterize the intensity profiles of such beams become deformed and may even lose integrity. These artifacts may compromise the possibility of establishing free-space optical links based on OAM superpositions. We propose using a particular selection of Laguerre-Gauss modes and convolutional neural networks for a reliable classification of superpositions of two modes. The network (based on a pre-trained network AlexNet that combines convolutional and fully-connected layers) is trained as a classifier based on 2-d intensity profiles that can be obtained from a digital camera. For illustrating the proposed method, we used simulations of light beams propagated through L = 1 km with three levels of turbulence: Cn2 ∈ {2×10-15, 9.24×10-15, 2.9×10-14} m-2/3. The emitted beams are made up of 2 different Laguerre-Gauss modes with OAM between -15 and +15, and radial indices between 0 and 3. Classification results show that the radial index can be used effectively to enlarge the set of information symbols.

Idioma originalInglés
Título de la publicación alojadaLaser Communication and Propagation through the Atmosphere and Oceans X
EditoresJaime A. Anguita, Jeremy P. Bos, David T. Wayne
EditorialSPIE
Páginas19
ISBN (versión digital)9781510645066
ISBN (versión impresa)9781510645066
DOI
EstadoPublicada - 30 jul. 2021
EventoLaser Communication and Propagation through the Atmosphere and Oceans X 2021 - San Diego, Estados Unidos
Duración: 1 ago. 20215 ago. 2021

Serie de la publicación

NombreProceedings of SPIE - The International Society for Optical Engineering
Volumen11834
ISSN (versión impresa)0277-786X
ISSN (versión digital)1996-756X

Conferencia

ConferenciaLaser Communication and Propagation through the Atmosphere and Oceans X 2021
País/TerritorioEstados Unidos
CiudadSan Diego
Período1/08/215/08/21

Nota bibliográfica

Publisher Copyright:
© 2021 SPIE.

Huella

Profundice en los temas de investigación de 'Classification of multiple-state OAM superpositions using convolutional neural networks'. En conjunto forman una huella única.

Citar esto