Characterization of time-dependence for dissipative solitons stabilized by nonlinear gradient terms: Periodic and quasiperiodic vs chaotic behavior

Orazio Descalzi*, M. Facão, Carlos Cartes, M. I. Carvalho, Helmut R. Brand

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We investigate the properties of time-dependent dissipative solitons for a cubic complex Ginzburg-Landau equation stabilized by nonlinear gradient terms. The separation of initially nearby trajectories in the asymptotic limit is predominantly used to distinguish qualitatively between time-periodic behavior and chaotic localized states. These results are further corroborated by Fourier transforms and time series. Quasiperiodic behavior is obtained as well, but typically over a fairly narrow range of parameter values. For illustration, two examples of nonlinear gradient terms are examined: the Raman term and combinations of the Raman term with dispersion of the nonlinear gain. For small quintic perturbations, it turns out that the chaotic localized states are showing a transition to periodic states, stationary states, or collapse already for a small magnitude of the quintic perturbations. This result indicates that the basin of attraction for chaotic localized states is rather shallow.

Idioma originalInglés
Número de artículo083151
PublicaciónChaos
Volumen33
N.º8
DOI
EstadoPublicada - 1 ago. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 Author(s).

Huella

Profundice en los temas de investigación de 'Characterization of time-dependence for dissipative solitons stabilized by nonlinear gradient terms: Periodic and quasiperiodic vs chaotic behavior'. En conjunto forman una huella única.

Citar esto