Chaotic diffusion of dissipative solitons: From anti-persistent random walks to Hidden Markov Models

Tony Albers*, Jaime Cisternas, Günter Radons

*Autor correspondiente de este trabajo

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

In previous publications, we showed that the incremental process of the chaotic diffusion of dissipative solitons in a prototypical complex Ginzburg-Landau equation, known, e.g., from nonlinear optics, is governed by a simple Markov process leading to an Anti-Persistent Random Walk of motion or by a more complex Hidden Markov Model with continuous output densities. In this article, we reveal the transition between these two models by examining the dependence of the soliton dynamics on the main bifurcation parameter of the cubic-quintic Ginzburg-Landau equation, and by identifying the underlying hidden Markov processes. These models capture the non-trivial decay of correlations in jump widths and sequences of symbols representing the symbolic dynamics of short and long jumps, the statistics of anti-persistent walk episodes, and the multimodal density of the jump widths. We demonstrate that there exists a physically meaningful reduction of the dynamics of an infinite-dimensional deterministic system to one of a probabilistic finite state machine and provide a deeper understanding of the soliton dynamics under parameter variation of the underlying nonlinear dynamics.

Idioma originalInglés
Número de artículo112290
PublicaciónChaos, Solitons and Fractals
Volumen161
DOI
EstadoPublicada - ago. 2022

Nota bibliográfica

Publisher Copyright:
© 2022 Elsevier Ltd

Huella

Profundice en los temas de investigación de 'Chaotic diffusion of dissipative solitons: From anti-persistent random walks to Hidden Markov Models'. En conjunto forman una huella única.

Citar esto