Resumen
Biologically plausible mechanism like homeostasis compliments Hebbian learning to allow unsupervised learning in spiking neural networks [1]. In this work, we propose a novel ferroelectric-based quasi-LIF neuron that induces intrinsic homeostasis. We experimentally characterize and perform phase-field simulations to delineate the non-trivial transient polarization relaxation mechanism associated with multi-domain interaction in poly-crystalline ferroelectric, such as Zr doped HfO2, that underlines the Q-LIF behavior. Network level simulations with the Q-LIF neuron model exhibits a 2.3x reduction in firing rate compared to traditional LIF neuron while maintaining iso-accuracy of 84-85% across varying network sizes. Such an energy-efficient hardware for spiking neuron can enable ultra-low power data processing in energy constrained environments suitable for edge-intelligence.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2019 Symposium on VLSI Technology, VLSI Technology 2019 - Digest of Technical Papers |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
Páginas | T140-T141 |
ISBN (versión digital) | 9784863487178 |
DOI | |
Estado | Publicada - jun. 2019 |
Publicado de forma externa | Sí |
Evento | 39th Symposium on VLSI Technology, VLSI Technology 2019 - Kyoto, Japón Duración: 9 jun. 2019 → 14 jun. 2019 |
Serie de la publicación
Nombre | Digest of Technical Papers - Symposium on VLSI Technology |
---|---|
Volumen | 2019-June |
ISSN (versión impresa) | 0743-1562 |
Conferencia
Conferencia | 39th Symposium on VLSI Technology, VLSI Technology 2019 |
---|---|
País/Territorio | Japón |
Ciudad | Kyoto |
Período | 9/06/19 → 14/06/19 |
Nota bibliográfica
Publisher Copyright:© 2019 The Japan Society of Applied Physics.