Bayesian Model-Updating Implementation in a Five-Story Building

Oscar D. Hurtado*, Albert R. Ortiz, Daniel Gomez, Peter Thomson, Rodrigo Astroza

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In the realm of structural health monitoring (SHM) and structural engineering, numerical modeling and updating techniques strive to minimize disparities between experimental data and model predictions. Traditional methods seek to estimate an individual set of parameters, but they face challenges in capturing variations arising from the uncertainties inherent in structural models. In this context, Bayesian Inference (BI) has emerged. This study leverages BI to update parameters in a five-story building model and assess uncertainties. Modal frequencies and mode shapes are obtained from testing conducted on a full-scale reinforced concrete building affixed to the NEES-UCSD shake table at the University of California, San Diego, USA. This implementation incorporates an iterative updating approach for the covariance matrix, affording a deeper comprehension of correlations among modal parameters. A noteworthy advantage of this approach is its capacity to account for uncertainties inherent in experimental data and the correlation of each set of parameters and outputs, thereby offering a more robust representation of the building’s behavior. This approach is particularly valuable in cases with limited sample sizes, where experimental data variability is inherently low, facilitating precise posterior distribution estimation. Furthermore, this study explores the implications of utilizing a multivariate normal likelihood function as a likelihood function, potentially leading to better posterior distribution estimations by accommodating the unique characteristics of each parameter. The outcomes underscore the efficacy of the Bayesian model updating approach in achieving a statistically robust parameter updating, facilitating a thorough characterization of uncertainty, and elevating confidence levels in the model’s predictions.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 10th International Operational Modal Analysis Conference, IOMAC 2024 - Volume 2
EditoresCarlo Rainieri, Carmelo Gentile, Manuel Aenlle López
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas383-392
Número de páginas10
ISBN (versión impresa)9783031614248
DOI
EstadoPublicada - 2024
Evento10th International Operational Modal Analysis Conference, IOMAC 2024 - Naples, Italia
Duración: 22 may. 202424 may. 2024

Serie de la publicación

NombreLecture Notes in Civil Engineering
Volumen515 LNCE
ISSN (versión impresa)2366-2557
ISSN (versión digital)2366-2565

Conferencia

Conferencia10th International Operational Modal Analysis Conference, IOMAC 2024
País/TerritorioItalia
CiudadNaples
Período22/05/2424/05/24

Nota bibliográfica

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Huella

Profundice en los temas de investigación de 'Bayesian Model-Updating Implementation in a Five-Story Building'. En conjunto forman una huella única.

Citar esto