TY - JOUR
T1 - Assessing university enrollment and admission efforts via hierarchical classification and feature selection
AU - Maldonado, Sebastián
AU - Armelini, Guillermo
AU - Guevara, C. Angelo
N1 - Funding Information:
This research was partially funded by the Complex Engineering Systems Institute, ISCI (ICM-FIC: P05-004-F, CONICYT: FB0816), and by CONICYT, Fondecyt projects 1160738 (first author), and 1150590 (third author).
Publisher Copyright:
© 2017 - IOS Press and the authors. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Recruiting prospective students efficiently and effectively is a very important challenge for universities, mainly because of the increasing competition and the relevance of enrollment-generated revenues. This work provides an intelligent system for modeling the student enrollment decisions problem. A nested logit classifier was constructed to predict which prospective students will eventually enroll in different Bachelor degree programs of a small-sized, private Chilean university. Feature selection is performed to identify the key features that influence the student decisions, such as socio-demographic variables (gender, age, school type, among others), admission efforts, and admission test results. Our results suggest that on-campus activities are far more productive than career fairs and other efforts performed off campus, demonstrating the importance of bringing prospective students to the university. Furthermore, variables such as gender, school type, and declared university and Bachelor degree program preferences are shown to be relevant in successfully modeling the student's choice of university.
AB - Recruiting prospective students efficiently and effectively is a very important challenge for universities, mainly because of the increasing competition and the relevance of enrollment-generated revenues. This work provides an intelligent system for modeling the student enrollment decisions problem. A nested logit classifier was constructed to predict which prospective students will eventually enroll in different Bachelor degree programs of a small-sized, private Chilean university. Feature selection is performed to identify the key features that influence the student decisions, such as socio-demographic variables (gender, age, school type, among others), admission efforts, and admission test results. Our results suggest that on-campus activities are far more productive than career fairs and other efforts performed off campus, demonstrating the importance of bringing prospective students to the university. Furthermore, variables such as gender, school type, and declared university and Bachelor degree program preferences are shown to be relevant in successfully modeling the student's choice of university.
KW - Hierarchical classification
KW - analytics
KW - feature selection
KW - nested logit
KW - university enrollment
UR - http://www.scopus.com/inward/record.url?scp=85028014883&partnerID=8YFLogxK
U2 - 10.3233/IDA-160186
DO - 10.3233/IDA-160186
M3 - Article
AN - SCOPUS:85028014883
SN - 1088-467X
VL - 21
SP - 945
EP - 962
JO - Intelligent Data Analysis
JF - Intelligent Data Analysis
IS - 4
ER -