Ambient particulate air pollution and daily mortality in 652 cities

Cong Liu, Renjie Chen, Francesco Sera, Ana M. Vicedo-Cabrera, Yuming Guo, Shilu Tong, Micheline S.Z.S. Coelho, Paulo H.N. Saldiva, Eric Lavigne, Patricia Matus, Nicolas Valdes Ortega, Samuel Osorio Garcia, Mathilde Pascal, Massimo Stafoggia, Matteo Scortichini, Masahiro Hashizume, Yasushi Honda, Magali Hurtado-Díaz, Julio Cruz, Baltazar NunesJoão P. Teixeira, Ho Kim, Aurelio Tobias, Carmen Íñiguez, Bertil Forsberg, Christofer Åström, Martina S. Ragettli, Yue Leon Guo, Bing Yu Chen, Michelle L. Bell, Caradee Y. Wright, Noah Scovronick, Rebecca M. Garland, Ai Milojevic, Jan Kyselý, Aleš Urban, Hans Orru, Ene Indermitte, Jouni J.K. Jaakkola, Niilo R.I. Ryti, Klea Katsouyanni, Antonis Analitis, Antonella Zanobetti, Joel Schwartz, Jianmin Chen, Tangchun Wu, Aaron Cohen, Antonio Gasparrini, Haidong Kan

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

358 Citas (Scopus)

Resumen

BACKGROUND The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. METHODS We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration–response curves from each city were pooled to allow global estimates to be derived. RESULTS On average, an increase of 10 μg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration–response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. CONCLUSIONS Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.)

Idioma originalInglés
Páginas (desde-hasta)705-715
Número de páginas11
PublicaciónNew England Journal of Medicine
Volumen381
N.º8
DOI
EstadoPublicada - 22 ago 2019
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
Copyright © 2019 Massachusetts Medical Society.

Huella

Profundice en los temas de investigación de 'Ambient particulate air pollution and daily mortality in 652 cities'. En conjunto forman una huella única.

Citar esto